
1-December-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Memory hierarchy

● Optimization background

● Hands-on with VTune

1-December-2007 © Copyright Ian D. Romanick 2007

Memory Hierarchy
Computer memory is made up from a hierarchy

of memory types
● Faster memory is smaller and closer to the

processor core

Four primary levels in the hierarchy:
● registers

● L1 / L2 / L3 cache

● main memory

● disk

1-December-2007 © Copyright Ian D. Romanick 2007

Data Transfer Performance
Two primary factors affect data transfer

performance:
● Bandwidth: amount of data transfered per unit time

● Latency: elapsed time from a data request to the
arrival of the first bits

 In most cases, a balance is desired
● High latency can nullify benefits of high bandwidth

“Never underestimate the bandwidth of a station wagon full of tapes
hurtling down the highway.”

-- Andrew S. Tanenbaum

1-December-2007 © Copyright Ian D. Romanick 2007

Latency vs. Bandwidth
Latency can be masked by using more

bandwidth
● Guess what data might be needed, and prefetch it

● Mis-predictions waste bandwidth, but add
essentially zero extra latency

● Correct predictions can eliminate nearly all latency

Most CPUs and memory controllers do some of
this automatically
● All modern CPUs include special instructions to

request a memory prefetch

1-December-2007 © Copyright Ian D. Romanick 2007

Latency Survey
Latencies for common current generation

processors:
● registers: 0 or 1 clock cycle access, 512 bytes

● L1 cache: 3 or 4 clock cycle access, 32kB - 128kB

● L2 cache: 14 – 32 clock cycle access, 1MB – 12MB

● main memory: 150 – 300 clock cycle access, 1GB –
16GB

● disk: ~20 million clock cycle access

1-December-2007 © Copyright Ian D. Romanick 2007

Locality of Reference
All caching is based on one principle: related

storage locations are frequently accessed

Three forms:
● Temporal: if a given location is accessed once, it

will likely be accessed again

● Spatial: if a given location is accessed, locations
near it will likely be accessed

● Sequential: if location N is accessed, location N+1
will likely be accessed

1-December-2007 © Copyright Ian D. Romanick 2007

Cache Lines
Locations are grouped into cache lines

● Lines are typically 16, 32, or 64 bytes

● When location N is accessed, the entire line
containing it is fetched
• Spatial locality

1-December-2007 © Copyright Ian D. Romanick 2007

Cache Replacement
As data is fetched into the cache, it will

eventually become full
● When this occurs, data must be discarded to make

room for new data

Nearly all caches use a least-recently-used
(LRU) replacement policy
● The data least recently used is evicted

• Temporal locality

1-December-2007 © Copyright Ian D. Romanick 2007

What does this mean for us?
Try to organize data storage and data access to

maximize cache usage
● Store structure elements that will be accessed

together within a single cache line

● Avoid use of pointer-linked structures when possible

● Store blocks of data that will be accessed together
in a single block

● Use prefetching instructions to pull data in before it
is needed

1-December-2007 © Copyright Ian D. Romanick 2007

Array of Structures
Consider this edge structure:

struct edge {
 edge *cw[2];
 edge *ccw[2];
 faces *f[2];
 vertex *v[2];
 edge_link *owner[2];
};

Data grouping is bad
● cw and ccw will be used for edge traversal, but
vertex is unlikely to be used at that time

● vertex “pollutes” the cache and wastes space

1-December-2007 © Copyright Ian D. Romanick 2007

Structure of Arrays
 Consider this edge structure:

struct edge_table {
 unsigned *cw_list;
 unsigned *ccw_list;
 faces **f_list;
 vertex **v_list;
 edge_link **owner_list;
};

Data grouping is much better!
● All values cw are stored together

● vertex data no longer pollutes the cache while
performing edge traversal

1-December-2007 © Copyright Ian D. Romanick 2007

References
Tanenbaum, Andrew S. Computer Networks. New Jersey: Prentice-Hall, 1983.
ISBN 0-13-349945-6.

Denning, P. J. 2005. The locality principle. Communications of the ACM 48, 7
(Jul. 2005), 19-24. http://cs.gmu.edu/cne/pjd/PUBS/CACMcols/cacmJul05.pdf

van der Pas, Ruud. Memory Hierarchy in Cache-Based Systems. Sun
Microsystems. 2002. http://www.sun.com/blueprints/1102/817-0742.pdf

http://cs.gmu.edu/cne/pjd/PUBS/CACMcols/cacmJul05.pdf
http://www.sun.com/blueprints/1102/817-0742.pdf

1-December-2007 © Copyright Ian D. Romanick 2007

About optimization...
“Premature optimization is the root of all evil”

-- Donald Knuth

1-December-2007 © Copyright Ian D. Romanick 2007

Amdahl's Law
Predicts the maximum possible overall speed

up achieved by speeding up a given component

● P is the percentage of the whole to be improved

● S is the speed up in that portion

● The speed up is the inverse of the time taken for the
unoptimized portion plus the new time of the
optimized portion

1

1−P
P
S

1-December-2007 © Copyright Ian D. Romanick 2007

Amdahl's Law (cont.)
 If a program spends 10% of its time in one code

segment, what is the maximum improvement
we can get by optimizing that code?

1-December-2007 © Copyright Ian D. Romanick 2007

Amdahl's Law (cont.)
 If a program spends 10% of its time in one code

segment, what is the maximum improvement
we can get by optimizing that code?
● P = 0.1, S = ∞

1

1−P
P
S

=
1

1−.1
.1
∞

=
1

1−.10
=

1
.9
=1.111...

1-December-2007 © Copyright Ian D. Romanick 2007

Amdahl's Law (cont.)
 If a program spends 10% of its time in one code

segment, what is the maximum improvement
we can get by optimizing that code?
● P = 0.1, S = ∞

● 1.1x improvement is probably not worth the effort

1

1−P
P
S

=
1

1−.1
.1
∞

=
1

1−.10
=

1
.9
=1.111...

1-December-2007 © Copyright Ian D. Romanick 2007

Profiling
Profiling guides all optimization efforts

● Determine where the most time is spent

● Optimize that portion first

● Profile again...lather, rinse, repeat...

Determine if the code needs to be optimized
● Is it cheaper to buy faster hardware than to pay

programmers to optimize the code?

● You have to know what is “fast enough”

1-December-2007 © Copyright Ian D. Romanick 2007

References
Knuth, Donald. 1974. Structured Programming with Goto Statements.
Computing Surveys 6:4, 261–301.
http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

http://en.wikipedia.org/wiki/Amdahl's_law

http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf
http://en.wikipedia.org/wiki/Amdahl's_law

1-December-2007 © Copyright Ian D. Romanick 2007

Next week...
Numerical and geometric robustness

Prepare for final

1-December-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 VTune is a trademark of Intel Corporation.

 Other company, product, and service names may be trademarks or
service marks of others.

