
1-December-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Memory hierarchy

● Optimization background

● Hands-on with VTune

1-December-2007 © Copyright Ian D. Romanick 2007

Memory Hierarchy
Computer memory is made up from a hierarchy

of memory types
● Faster memory is smaller and closer to the

processor core

Four primary levels in the hierarchy:
● registers

● L1 / L2 / L3 cache

● main memory

● disk

1-December-2007 © Copyright Ian D. Romanick 2007

Data Transfer Performance
Two primary factors affect data transfer

performance:
● Bandwidth: amount of data transfered per unit time

● Latency: elapsed time from a data request to the
arrival of the first bits

 In most cases, a balance is desired
● High latency can nullify benefits of high bandwidth

“Never underestimate the bandwidth of a station wagon full of tapes
hurtling down the highway.”

-- Andrew S. Tanenbaum

1-December-2007 © Copyright Ian D. Romanick 2007

Latency vs. Bandwidth
Latency can be masked by using more

bandwidth
● Guess what data might be needed, and prefetch it

● Mis-predictions waste bandwidth, but add
essentially zero extra latency

● Correct predictions can eliminate nearly all latency

Most CPUs and memory controllers do some of
this automatically
● All modern CPUs include special instructions to

request a memory prefetch

1-December-2007 © Copyright Ian D. Romanick 2007

Latency Survey
Latencies for common current generation

processors:
● registers: 0 or 1 clock cycle access, 512 bytes

● L1 cache: 3 or 4 clock cycle access, 32kB - 128kB

● L2 cache: 14 – 32 clock cycle access, 1MB – 12MB

● main memory: 150 – 300 clock cycle access, 1GB –
16GB

● disk: ~20 million clock cycle access

1-December-2007 © Copyright Ian D. Romanick 2007

Locality of Reference
All caching is based on one principle: related

storage locations are frequently accessed

Three forms:
● Temporal: if a given location is accessed once, it

will likely be accessed again

● Spatial: if a given location is accessed, locations
near it will likely be accessed

● Sequential: if location N is accessed, location N+1
will likely be accessed

1-December-2007 © Copyright Ian D. Romanick 2007

Cache Lines
Locations are grouped into cache lines

● Lines are typically 16, 32, or 64 bytes

● When location N is accessed, the entire line
containing it is fetched
• Spatial locality

1-December-2007 © Copyright Ian D. Romanick 2007

Cache Replacement
As data is fetched into the cache, it will

eventually become full
● When this occurs, data must be discarded to make

room for new data

Nearly all caches use a least-recently-used
(LRU) replacement policy
● The data least recently used is evicted

• Temporal locality

1-December-2007 © Copyright Ian D. Romanick 2007

What does this mean for us?
Try to organize data storage and data access to

maximize cache usage
● Store structure elements that will be accessed

together within a single cache line

● Avoid use of pointer-linked structures when possible

● Store blocks of data that will be accessed together
in a single block

● Use prefetching instructions to pull data in before it
is needed

1-December-2007 © Copyright Ian D. Romanick 2007

Array of Structures
Consider this edge structure:

struct edge {
 edge *cw[2];
 edge *ccw[2];
 faces *f[2];
 vertex *v[2];
 edge_link *owner[2];
};

Data grouping is bad
● cw and ccw will be used for edge traversal, but
vertex is unlikely to be used at that time

● vertex “pollutes” the cache and wastes space

1-December-2007 © Copyright Ian D. Romanick 2007

Structure of Arrays
 Consider this edge structure:

struct edge_table {
 unsigned *cw_list;
 unsigned *ccw_list;
 faces **f_list;
 vertex **v_list;
 edge_link **owner_list;
};

Data grouping is much better!
● All values cw are stored together

● vertex data no longer pollutes the cache while
performing edge traversal

1-December-2007 © Copyright Ian D. Romanick 2007

References
Tanenbaum, Andrew S. Computer Networks. New Jersey: Prentice-Hall, 1983.
ISBN 0-13-349945-6.

Denning, P. J. 2005. The locality principle. Communications of the ACM 48, 7
(Jul. 2005), 19-24. http://cs.gmu.edu/cne/pjd/PUBS/CACMcols/cacmJul05.pdf

van der Pas, Ruud. Memory Hierarchy in Cache-Based Systems. Sun
Microsystems. 2002. http://www.sun.com/blueprints/1102/817-0742.pdf

http://cs.gmu.edu/cne/pjd/PUBS/CACMcols/cacmJul05.pdf
http://www.sun.com/blueprints/1102/817-0742.pdf

1-December-2007 © Copyright Ian D. Romanick 2007

About optimization...
“Premature optimization is the root of all evil”

-- Donald Knuth

1-December-2007 © Copyright Ian D. Romanick 2007

Amdahl's Law
Predicts the maximum possible overall speed

up achieved by speeding up a given component

● P is the percentage of the whole to be improved

● S is the speed up in that portion

● The speed up is the inverse of the time taken for the
unoptimized portion plus the new time of the
optimized portion

1

1−P
P
S

1-December-2007 © Copyright Ian D. Romanick 2007

Amdahl's Law (cont.)
 If a program spends 10% of its time in one code

segment, what is the maximum improvement
we can get by optimizing that code?

1-December-2007 © Copyright Ian D. Romanick 2007

Amdahl's Law (cont.)
 If a program spends 10% of its time in one code

segment, what is the maximum improvement
we can get by optimizing that code?
● P = 0.1, S = ∞

1

1−P
P
S

=
1

1−.1
.1
∞

=
1

1−.10
=

1
.9
=1.111...

1-December-2007 © Copyright Ian D. Romanick 2007

Amdahl's Law (cont.)
 If a program spends 10% of its time in one code

segment, what is the maximum improvement
we can get by optimizing that code?
● P = 0.1, S = ∞

● 1.1x improvement is probably not worth the effort

1

1−P
P
S

=
1

1−.1
.1
∞

=
1

1−.10
=

1
.9
=1.111...

1-December-2007 © Copyright Ian D. Romanick 2007

Profiling
Profiling guides all optimization efforts

● Determine where the most time is spent

● Optimize that portion first

● Profile again...lather, rinse, repeat...

Determine if the code needs to be optimized
● Is it cheaper to buy faster hardware than to pay

programmers to optimize the code?

● You have to know what is “fast enough”

1-December-2007 © Copyright Ian D. Romanick 2007

References
Knuth, Donald. 1974. Structured Programming with Goto Statements.
Computing Surveys 6:4, 261–301.
http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

http://en.wikipedia.org/wiki/Amdahl's_law

http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf
http://en.wikipedia.org/wiki/Amdahl's_law

1-December-2007 © Copyright Ian D. Romanick 2007

Next week...
Numerical and geometric robustness

Prepare for final

1-December-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 VTune is a trademark of Intel Corporation.

 Other company, product, and service names may be trademarks or
service marks of others.

