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Data Structures & Algorithms for Geometry

Agenda:
● Memory hierarchy

● Optimization background

● Hands-on with VTune
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Memory Hierarchy
Computer memory is made up from a hierarchy 

of memory types
● Faster memory is smaller and closer to the 

processor core

Four primary levels in the hierarchy:
● registers

● L1 / L2 / L3 cache

● main memory

● disk
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Data Transfer Performance
Two primary factors affect data transfer 

performance:
● Bandwidth: amount of data transfered per unit time

● Latency: elapsed time from a data request to the 
arrival of the first bits

 In most cases, a balance is desired
● High latency can nullify benefits of high bandwidth

“Never underestimate the bandwidth of a station wagon full of tapes 
hurtling down the highway.”

-- Andrew S. Tanenbaum
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Latency vs. Bandwidth
Latency can be masked by using more 

bandwidth
● Guess what data might be needed, and prefetch it

● Mis-predictions waste bandwidth, but add 
essentially zero extra latency

● Correct predictions can eliminate nearly all latency

Most CPUs and memory controllers do some of 
this automatically
● All modern CPUs include special instructions to 

request a memory prefetch
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Latency Survey
Latencies for common current generation 

processors:
● registers: 0 or 1 clock cycle access, 512 bytes

● L1 cache: 3 or 4 clock cycle access, 32kB - 128kB 

● L2 cache: 14 – 32 clock cycle access, 1MB – 12MB

● main memory: 150 – 300 clock cycle access, 1GB – 
16GB

● disk: ~20 million clock cycle access



1-December-2007 © Copyright Ian D. Romanick 2007

Locality of Reference
All caching is based on one principle: related 

storage locations are frequently accessed

Three forms:
● Temporal: if a given location is accessed once, it 

will likely be accessed again

● Spatial: if a given location is accessed, locations 
near it will likely be accessed

● Sequential: if location N is accessed, location N+1 
will likely be accessed
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Cache Lines
Locations are grouped into cache lines

● Lines are typically 16, 32, or 64 bytes

● When location N is accessed, the entire line 
containing it is fetched
• Spatial locality
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Cache Replacement
As data is fetched into the cache, it will 

eventually become full
● When this occurs, data must be discarded to make 

room for new data

Nearly all caches use a least-recently-used 
(LRU) replacement policy
● The data least recently used is evicted

• Temporal locality
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What does this mean for us?
Try to organize data storage and data access to 

maximize cache usage
● Store structure elements that will be accessed 

together within a single cache line

● Avoid use of pointer-linked structures when possible

● Store blocks of data that will be accessed together 
in a single block

● Use prefetching instructions to pull data in before it 
is needed
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Array of Structures
Consider this edge structure:

struct edge {
    edge      *cw[2];
    edge      *ccw[2];
    faces     *f[2];
    vertex    *v[2];
    edge_link *owner[2];
};

Data grouping is bad
● cw and ccw will be used for edge traversal, but 
vertex is unlikely to be used at that time

● vertex “pollutes” the cache and wastes space
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Structure of Arrays
 Consider this edge structure:

struct edge_table {
    unsigned  *cw_list;
    unsigned  *ccw_list;
    faces     **f_list;
    vertex    **v_list;
    edge_link **owner_list;
};

Data grouping is much better!
● All values cw are stored together

● vertex data no longer pollutes the cache while 
performing edge traversal
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About optimization...
“Premature optimization is the root of all evil”

-- Donald Knuth
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Amdahl's Law
Predicts the maximum possible overall speed 

up achieved by speeding up a given component

● P is the percentage of the whole to be improved

● S is the speed up in that portion

● The speed up is the inverse of the time taken for the 
unoptimized portion plus the new time of the 
optimized portion

1

1−P
P
S
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Amdahl's Law (cont.)
 If a program spends 10% of its time in one code 

segment, what is the maximum improvement 
we can get by optimizing that code?
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Amdahl's Law (cont.)
 If a program spends 10% of its time in one code 

segment, what is the maximum improvement 
we can get by optimizing that code?
● P = 0.1, S = ∞

1

1−P
P
S

=
1

1−.1
.1
∞

=
1

1−.10
=

1
.9
=1.111...
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Amdahl's Law (cont.)
 If a program spends 10% of its time in one code 

segment, what is the maximum improvement 
we can get by optimizing that code?
● P = 0.1, S = ∞

● 1.1x improvement is probably not worth the effort

1

1−P
P
S

=
1

1−.1
.1
∞

=
1

1−.10
=

1
.9
=1.111...
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Profiling
Profiling guides all optimization efforts

● Determine where the most time is spent

● Optimize that portion first

● Profile again...lather, rinse, repeat...

Determine if the code needs to be optimized
● Is it cheaper to buy faster hardware than to pay 

programmers to optimize the code?

● You have to know what is “fast enough”
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Next week...
Numerical and geometric robustness

Prepare for final



1-December-2007 © Copyright Ian D. Romanick 2007

Legal Statement
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 VTune is a trademark of Intel Corporation.

 Other company, product, and service names may be trademarks or 
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